[35] J. G. Aunins, “Viral vaccine production in cell culture,” Encyclopedia Cell
Technol., 2003, 10.1002/0471250570.spi105
[36] D. Vazquez-Ramirez, Y. Genzel, I. Jordan, V. Sandig, and U. Reichl, “High-cell-
density cultivations to increase MVA virus production,” Vaccine, vol. 36, no. 22,
pp. 3124–3133, May 2018.
[37] D. Vazquez-Ramirez, I. Jordan, V. Sandig, Y. Genzel, and U. Reichl, “High titer
MVA and influenza A virus production using a hybrid fed-batch/perfusion strategy
with an ATF system,” Appl. Microbiol. Biotechnol., vol. 103, no. 7, pp. 3025–3035,
Apr. 2019.
[38] Y. Genzel et al., “High cell density cultivations by alternating tangential flow (ATF)
perfusion for influenza A virus production using suspension cells,” Vaccine, vol. 32,
no. 24, pp. 2770–2781, May 2014.
[39] G. Seth et al., “Development of a new bioprocess scheme using frozen seed train
intermediates to initiate CHO cell culture manufacturing campaigns,” Biotechnol.
Bioeng., vol. 110, no. 5, pp. 1376–1385, May 2013.
[40] M. D. Hein, A. Chawla, M. Cattaneo, S. Y. Kupke, Y. Genzel, and U. Reichl, “Cell
culture-based production of defective interfering influenza A virus particles in
perfusion mode using an alternating tangential flow filtration system,” Appl.
Microbiol. Biotechnol., vol. 105, no. 19, pp. 7251–7264, 2021.
[41] G. Gränicher et al., “A high cell density perfusion process for Modified Vaccinia virus
Ankara production: Process integration with inline DNA digestion and cost analysis,”
(in eng), Biotechnol. Bioeng., vol. 118, no. 12, pp. 4720–4731, Sep. 2021.
[42] E. Petiot, S. Ansorge, M. Rosa-Calatrava, and A. Kamen, “Critical phases of viral
production processes monitored by capacitance,” J. Biotechnol., vol. 242,
pp. 19–29, Jan. 2017.
[43] D. Voisard, F. Meuwly, P. A. Ruffieux, G. Baer, and A. Kadouri, “Potential of cell
retention techniques for large-scale high-density perfusion culture of suspended
mammalian cells,” (in eng), Biotechnol. Bioeng., vol. 82, no. 7, pp. 751–765, Jun. 2003.
[44] J. Coronel et al., “Influenza A virus production in a single-use orbital shaken
bioreactor with ATF or TFF perfusion systems,” Vaccine, vol. 37, no. 47,
pp. 7011–7018, 2019.
[45] G. Gränicher et al., “Efficient influenza A virus production in high cell density using
the novel porcine suspension cell line PBG.PK2.1,” (in eng), Vaccine, vol. 37,
no. 47, pp. 7019–7028, Nov. 2019.
[46] F. Tapia et al., “Production of high-titer human influenza A virus with adherent and
suspension MDCK cells cultured in a single-use hollow fiber bioreactor,” Vaccine,
vol. 32, no. 8, pp. 1003–1011, Feb. 2014.
[47] E. Petiot and A. Kamen, “Real-time monitoring of influenza virus production kinetics
in HEK293 cell cultures,” Biotechnol. Prog., vol. 29, no. 1, pp. 275–284, 2013.
[48] A. P. Manceur et al., “Scalable Lentiviral Vector Production Using Stable
HEK293SF Producer Cell Lines,” (in eng), Hum. Gene Ther. Methods, vol. 28, no.
6, pp. 330–339, 2017.
[49] O. Henry, E. Dormond, M. Perrier, and A. Kamen, “Insights into adenoviral vector
production kinetics in acoustic filter-based perfusion cultures,” (in eng), Biotechnol.
Bioeng., vol. 86, no. 7, pp. 765–774, Jun. 2004.
[50] G. Gränicher, J. Coronel, F. Trampler, I. Jordan, Y. Genzel, and U. Reichl,
“Performance of an acoustic settler versus a hollow fiber–based ATF technology for
influenza virus production in perfusion,” Appl. Microbiol. Biotechnol., vol. 104,
no. 11, pp. 4877–4888, 2020.
[51] E. A. Elsayed, R. D. A. Medronho, R. Wagner, and W. D. Deckwer, “Use of hy-
drocyclones for Mammalian cell retention: Separation efficiency and cell viability
(Part 1),” Eng. Life Sci., vol. 6, pp. 347–354, 2006.
Process intensification
169