[35] J. G. Aunins, “Viral vaccine production in cell culture,” Encyclopedia Cell

Technol., 2003, 10.1002/0471250570.spi105

[36] D. Vazquez-Ramirez, Y. Genzel, I. Jordan, V. Sandig, and U. Reichl, “High-cell-

density cultivations to increase MVA virus production,” Vaccine, vol. 36, no. 22,

pp. 3124–3133, May 2018.

[37] D. Vazquez-Ramirez, I. Jordan, V. Sandig, Y. Genzel, and U. Reichl, “High titer

MVA and influenza A virus production using a hybrid fed-batch/perfusion strategy

with an ATF system,” Appl. Microbiol. Biotechnol., vol. 103, no. 7, pp. 3025–3035,

Apr. 2019.

[38] Y. Genzel et al., “High cell density cultivations by alternating tangential flow (ATF)

perfusion for influenza A virus production using suspension cells,” Vaccine, vol. 32,

no. 24, pp. 2770–2781, May 2014.

[39] G. Seth et al., “Development of a new bioprocess scheme using frozen seed train

intermediates to initiate CHO cell culture manufacturing campaigns,” Biotechnol.

Bioeng., vol. 110, no. 5, pp. 1376–1385, May 2013.

[40] M. D. Hein, A. Chawla, M. Cattaneo, S. Y. Kupke, Y. Genzel, and U. Reichl, “Cell

culture-based production of defective interfering influenza A virus particles in

perfusion mode using an alternating tangential flow filtration system,” Appl.

Microbiol. Biotechnol., vol. 105, no. 19, pp. 7251–7264, 2021.

[41] G. Gränicher et al., “A high cell density perfusion process for Modified Vaccinia virus

Ankara production: Process integration with inline DNA digestion and cost analysis,”

(in eng), Biotechnol. Bioeng., vol. 118, no. 12, pp. 4720–4731, Sep. 2021.

[42] E. Petiot, S. Ansorge, M. Rosa-Calatrava, and A. Kamen, “Critical phases of viral

production processes monitored by capacitance,” J. Biotechnol., vol. 242,

pp. 19–29, Jan. 2017.

[43] D. Voisard, F. Meuwly, P. A. Ruffieux, G. Baer, and A. Kadouri, “Potential of cell

retention techniques for large-scale high-density perfusion culture of suspended

mammalian cells,” (in eng), Biotechnol. Bioeng., vol. 82, no. 7, pp. 751–765, Jun. 2003.

[44] J. Coronel et al., “Influenza A virus production in a single-use orbital shaken

bioreactor with ATF or TFF perfusion systems,” Vaccine, vol. 37, no. 47,

pp. 7011–7018, 2019.

[45] G. Gränicher et al., “Efficient influenza A virus production in high cell density using

the novel porcine suspension cell line PBG.PK2.1,” (in eng), Vaccine, vol. 37,

no. 47, pp. 7019–7028, Nov. 2019.

[46] F. Tapia et al., “Production of high-titer human influenza A virus with adherent and

suspension MDCK cells cultured in a single-use hollow fiber bioreactor,” Vaccine,

vol. 32, no. 8, pp. 1003–1011, Feb. 2014.

[47] E. Petiot and A. Kamen, “Real-time monitoring of influenza virus production kinetics

in HEK293 cell cultures,” Biotechnol. Prog., vol. 29, no. 1, pp. 275–284, 2013.

[48] A. P. Manceur et al., “Scalable Lentiviral Vector Production Using Stable

HEK293SF Producer Cell Lines,” (in eng), Hum. Gene Ther. Methods, vol. 28, no.

6, pp. 330–339, 2017.

[49] O. Henry, E. Dormond, M. Perrier, and A. Kamen, “Insights into adenoviral vector

production kinetics in acoustic filter-based perfusion cultures,” (in eng), Biotechnol.

Bioeng., vol. 86, no. 7, pp. 765–774, Jun. 2004.

[50] G. Gränicher, J. Coronel, F. Trampler, I. Jordan, Y. Genzel, and U. Reichl,

“Performance of an acoustic settler versus a hollow fiber–based ATF technology for

influenza virus production in perfusion,” Appl. Microbiol. Biotechnol., vol. 104,

no. 11, pp. 4877–4888, 2020.

[51] E. A. Elsayed, R. D. A. Medronho, R. Wagner, and W. D. Deckwer, “Use of hy-

drocyclones for Mammalian cell retention: Separation efficiency and cell viability

(Part 1),” Eng. Life Sci., vol. 6, pp. 347–354, 2006.

Process intensification

169